证明.项数为奇数2n的等差数列{an},有 S奇-S偶=an,s奇/S偶=n/n-1.
问题描述:
证明.项数为奇数2n的等差数列{an},有 S奇-S偶=an,s奇/S偶=n/n-1.
答
证明:
为奇数"2n-1"吧!
因为S奇偶都是等差数列,公差为2d,且奇n+1项,偶n项
S奇-S偶=1/2*(n+1)(a1+a2n-1)-1/2*n(a2+a2n-2)
=1/2*((n+1)*a1-n*a1-nd+n(an-1-an-2)+a2n-1)
=1/2*(a1+a2n-1)=an....................①
S奇/S偶:S奇+S偶=1/2*(a1+a2n-1)*(2n-1)=(2n-1)*an............................②
联立①②:S奇/S偶=n/n-1
答
这个题应该是两问:在等差数列中,
(1)若项数为偶数2n,则S偶-S奇=nd(d为公差);
(2)若项数为奇数2n-1,则s奇/S偶=n/(n-1).
证明:(1)S奇=a1+a3+…+a(2n-1) ,共n项 ( 2n-1为下标)
S偶=a2+a4+…+a2n ,共n项 ( 2n为下标)
S偶-S奇=(a2-a1)+(a4-a3)+…+[a2n- a(2n-1)]=nd
(2)S奇=a1+a3+…+a(2n-1) ,共n项 ( 2n-1为下标)
=[a1+a(2n-1)]•n/2
S偶=a2+a4+…+a(2n-2) ,共n-1项 ( 2n-2为下标)
=[a2+a(2n-2)]•(n-1)/2
∵a1+a(2n-1)=a2+a(2n-2)
∴s奇/S偶=n/(n-1).