计算((1/3)^2)×4^0+((1/3)^4)×4^1+((1/3)^6)×4^2+…+((1/3)^2n)×4^(n-1)

问题描述:

计算((1/3)^2)×4^0+((1/3)^4)×4^1+((1/3)^6)×4^2+…+((1/3)^2n)×4^(n-1)

Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)
a1=[(1/3)^2]×4^0=1/9
q=[(1/3)^2]×4=4/9
an=[(1/3)^2n]×4^(n-1)=[4^(n-1)]/(9^n)
an×q=[4^(n-1)]/(9^n)×4/9=(4^n)/[9^(n+1)]
1-q=1-4/9=5/9
Sn=(a1-an×q)/(1-q)
={1/9-(4^n)/[9^(n+1)]}/(5/9)
=(9^n-4^n)/(5×9^n)
=1/5×[1-(4/9)^n]
=1/5-(4^n)/[5×(9^n)]
小蛤 >