计算:(2+1)(2^2+1)(2^4+1)(2^8+1)…(2^2n+1)的值.
问题描述:
计算:(2+1)(2^2+1)(2^4+1)(2^8+1)…(2^2n+1)的值.
答
(2+1)(2^2+1)(2^4+1)(2^8+1)…(2^2n+1)
=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)…(2^2n+1)
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)…(2^2n+1)
=(2^4-1)(2^4+1)(2^8+1)…(2^2n+1)
=…… (连续运用平方差公式)
=2^4n-1