用数学归纳法证明:1×2×3+2×3×4+…+n×(n+1)×(n+2)=n(n+1)(n+2)(n+3)4(n∈N*).

问题描述:

用数学归纳法证明:1×2×3+2×3×4+…+n×(n+1)×(n+2)=

n(n+1)(n+2)(n+3)
4
(n∈N*).

证明:(1)当n=1时,左边=1×2×3=6,右边=

1×2×3×4
4
=6=左边,∴等式成立.
(2)设当n=k(k∈N*)时,等式成立,
1×2×3+2×3×4+…+k×(k+1)×(k+2)=
k(k+1)(k+2)(k+3)
4
.  
则当n=k+1时,
左边=1×2×3+2×3×4+…+k×(k+1)×(k+2)+(k+1)(k+2)(k+3)
k(k+1)(k+2)(k+3)
4
+(k+1)(k+2)(k+3)
=(k+1)(k+2)(k+3)(
k
4
+1)=
(k+1)(k+2)(k+3)(k+4)
4
(k+1)(k+1+1)(k+1+2)(k+1+3)
4
.

∴n=k+1时,等式成立.
由(1)、(2)可知,原等式对于任意n∈N*成立.
答案解析:先证明n=1时,结论成立,再设当n=k(k∈N*)时,等式成立,利用假设证明n=k+1时,等式成立即可.
考试点:数学归纳法.
知识点:本题考查数学归纳法证明等式问题,证题的关键是利用归纳假设证明n=k+1时,等式成立,属于中档题.