用数学归纳法证明:1×2×3+2×3×4+…+n×(n+1)×(n+2)=n(n+1)(n+2)(n+3)4(n∈N*).
问题描述:
用数学归纳法证明:1×2×3+2×3×4+…+n×(n+1)×(n+2)=
(n∈N*). n(n+1)(n+2)(n+3) 4
答
证明:(1)当n=1时,左边=1×2×3=6,右边=
=6=左边,∴等式成立.1×2×3×4 4
(2)设当n=k(k∈N*)时,等式成立,
即1×2×3+2×3×4+…+k×(k+1)×(k+2)=
. k(k+1)(k+2)(k+3) 4
则当n=k+1时,
左边=1×2×3+2×3×4+…+k×(k+1)×(k+2)+(k+1)(k+2)(k+3)
=
+(k+1)(k+2)(k+3)k(k+1)(k+2)(k+3) 4 =(k+1)(k+2)(k+3)(
+1)=k 4
(k+1)(k+2)(k+3)(k+4) 4 =
.(k+1)(k+1+1)(k+1+2)(k+1+3) 4
∴n=k+1时,等式成立.
由(1)、(2)可知,原等式对于任意n∈N*成立.
答案解析:先证明n=1时,结论成立,再设当n=k(k∈N*)时,等式成立,利用假设证明n=k+1时,等式成立即可.
考试点:数学归纳法.
知识点:本题考查数学归纳法证明等式问题,证题的关键是利用归纳假设证明n=k+1时,等式成立,属于中档题.