已知数列{an}满足a1=1,a2=2,an+2=an+an+12,n∈N*.(1)令bn=an+1-an,证明:{bn}是等比数列;(2)求{an}的通项公式.

问题描述:

已知数列{an}满足a1=1,a2=2,an+2=

an+an+1
2
,n∈N*
(1)令bn=an+1-an,证明:{bn}是等比数列;
(2)求{an}的通项公式.

(1)证b1=a2-a1=1,
当n≥2时,bnan+1an

an−1+an
2
an=−
1
2
(anan−1)=−
1
2
bn−1,
所以{bn}是以1为首项,
1
2
为公比的等比数列.
(2)解由(1)知bnan+1an=(−
1
2
)n−1

当n≥2时,an=a1+(a2-a1)+(a3-a2)++(an-an-1)=1+1+(-
1
2
)+…+(−
1
2
)
n−2

=1+
1−(−
1
2
)
n−1
1−(−
1
2
)
=1+
2
3
[1−(−
1
2
)n−2]
=
5
3
2
3
(−
1
2
)n−1

当n=1时,
5
3
2
3
(−
1
2
)1−1=1=a1

所以an
5
3
2
3
(−
1
2
)n−1(n∈N*)

答案解析:(1)先令n=1求出b1,然后当n≥2时,求出an+1的通项代入到bn中化简可得{bn}是以1为首项,
1
2
为公比的等比数列得证;
(2)由(1)找出bn的通项公式,当n≥2时,利用an=a1+(a2-a1)+(a3-a2)++(an-an-1)代入并利用等比数列的前n项和的公式求出即可得到an的通项,然后n=1检验也符合,所以n∈N,an都成立.
考试点:等比关系的确定;数列递推式.

知识点:考查学生会确定一个数列为等比数列,会利用数列的递推式的方法求数列的通项公式.以及会利用等比数列的前n项和的公式化简求值.