y=(sinx)^4-(cosx)^4的最小正周期怎么算?

问题描述:

y=(sinx)^4-(cosx)^4的最小正周期怎么算?

y=sin^(4)x・cos^(4)x
y=(sinxcosx)^4=(2sinxcosx/2)^4
={sin(2x)/2}^4=(1/16)sin^4(2x)

y=(sinx)^4-(cosx)^4
=(sin^2x+cos^2x)(sin^2x-cos^2x)
=1×(sin^2x-cos^2x)
=-cos2x
所以
最小正周期=2π÷2=π