10 已知a,b∈(0,+∞),且2^a·2^b-1=1,则1/2a+1/b的最小值为

问题描述:

10 已知a,b∈(0,+∞),且2^a·2^b-1=1,则1/2a+1/b的最小值为
A3/2+根号2
B.2
C.2根号2
D3/2
为什么

答案是A
2^a*2^(b-1)=1,∴a+b-1=0,即a+b=1
∴1/(2a)+1/b
=[1/(2a)+1/b]*(a+b)
=1/2+1+[b/(2a)+a/b]
≥3/2+√2
故选A