设 f(x) 在 (a,b) 上可导,若 f'(x) 在 (a,b) 上有界,则 f(x) 在 (a,b) 上有界
问题描述:
设 f(x) 在 (a,b) 上可导,若 f'(x) 在 (a,b) 上有界,则 f(x) 在 (a,b) 上有界
问命题是否正确?正确说明理由,错误举出反例
答
正确
因为f(x) 在 (a,b) 上可导,所以f(x) 在 (a,b) 上连续,对任意x0∈(a,b),f(x0)存在
根据拉格朗日中值定理,f(x)=f(x0)+f'(θ)(x-x0),(其中θ位于x与x0之间)由 f'(x)有界,设|f'(x)|≤M,可推出f(x)≤f(x0)+M(x-x0),即f(x)有界