f在(a,b)上可导,证明(a,b)上有一点ξ,满足f'(ξ)=(f(ξ)-f(a))/(b-ξ)

问题描述:

f在(a,b)上可导,证明(a,b)上有一点ξ,满足f'(ξ)=(f(ξ)-f(a))/(b-ξ)

证明:很简单啊,用罗尔定理证明
设F(x)=xf(x),显然函数F(x)在区间[a,b]上连续,在(a,b)内可导,
且F(a)=af(a)=ab,F(b)=bf(b)=ab,即F(a)=F(b)
所以根据罗尔定理,在(a,b)内至少存在一点ξ,使得F′(ξ)=f(ξ)+ξf′(ξ)=0.
故得证.
打字不易,