如图,在△ABC中,AB=AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB上一点,⊙O过A、E两点,交AD于点G,交AB于点F.(1)求证:BC与⊙O相切;(2)当∠BAC=120°时,求∠EFG的度数.

问题描述:

如图,在△ABC中,AB=AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB上一点,⊙O过A、E两点,交AD于点G,交AB于点F.

(1)求证:BC与⊙O相切;
(2)当∠BAC=120°时,求∠EFG的度数.

(1)证明:连接OE.∵AB=AC且D是BC中点,∴AD⊥BC.∵AE平分∠BAD,∴∠BAE=∠DAE.∵OA=OE,∴∠OAE=∠OEA,则∠OEA=∠DAE,∴OE∥AD,∴OE⊥BC,∴BC是⊙O的切线.(2)∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,AD...
答案解析:(1)连接OE,证OE⊥BC即可.因为AD⊥BC,所以转证OE∥AD.由AE平分∠BAD,OA=OE易得此结论.
(2)∠EFG=∠GAE=∠EAO=∠AEO.根据已知条件易得∠B=30°,∠EOB=60°.从而求解.
考试点:切线的判定.
知识点:此题考查了切线的判定、等腰三角形性质等知识点,难度中等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.