设a,b是非负实数,求证:a^3+b^3>=(ab)^1/2(a^2+b^2)

问题描述:

设a,b是非负实数,求证:a^3+b^3>=(ab)^1/2(a^2+b^2)

作差法:(a^3+b^3)^2 - [(a^2+b^2)根号(ab)]^2 =a^6 + 2a^3b^3 + b^6 - ab(a^4+2a^2b^2+b^4) =a^6 + 2a^3b^3 + b^6 - a^5b - 2a^3b^3 - ab^5 =a^6 - a^5b + b^6 - ab^5 =a^5(a-b) + b^5(b-a) =(a^5-b^5)(a-b) =(a-...