化简tanα(1-(cotα)^2)+cotα(1-(tanα)^2)

问题描述:

化简tanα(1-(cotα)^2)+cotα(1-(tanα)^2)

化简tanα(1-(cotα)^2)+cotα(1-(tanα)^2)
=[sina/cosa-(sina/cosa)(cosa/sina)^2]+[cosa/sina-(cosa/sina)(sina/cosa)^2]
=sina/cosa-cosa/sina+cosa/sina-sina/cosa
=0