如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为(  ) A.95 B.215 C.185 D.52

问题描述:

如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为(  )
A.

9
5

B.
21
5

C.
18
5

D.
5
2

∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,
∴AB=

AC2+BC2
=
33+42
=5,
过C作CM⊥AB,交AB于点M,如图所示,
∵CM⊥AB,
∴M为AD的中点,
∵S△ABC=
1
2
AC•BC=
1
2
AB•CM,且AC=3,BC=4,AB=5,
∴CM=
12
5

在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+(
12
5
2
解得:AM=
9
5

∴AD=2AM=
18
5

故选C.