如图,在三角形ABC中,D是BC边上的动点,DE平行AB,BC=6,AC=4根号2,角C=45度设BD=X,S三角形ADE=Y,求Y关于X的函数解析式在线等
问题描述:
如图,在三角形ABC中,D是BC边上的动点,DE平行AB,BC=6,AC=4根号2,角C=45度
设BD=X,S三角形ADE=Y,求Y关于X的函数解析式
在线等
答
Sade=Sacd-Scde
sin45*2*(6-x)-sin45*(6-x)*(6-x)/3=y
答
图在???
答
AB*AB=BC*BC+AC*AC-2*BC*AC*cos45度=20
所以AB=2根号5
(6-x):6=DE:AB
ABC=6*4/2=12
DEC:ABC=DE平方:AB平方
ADE:ABD=DE:AB
所以,ADE=[12-(6-x)平方/3]*(6-x)/6
即y=2(6-x)-(6-x)三次方/18
答
因为DE平行AB 所以AE/AC=BD/CB 推出AE的长度。过D作DH垂直AC,有因为角C=45度,CD=6-X,所以DH就可以求出。那么面积就OK了。X的取值范围是0~4根号2.