一个汽车零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利润150元,每制造一个乙种零件可获利润260元,车间每天安排x名工人制

问题描述:

一个汽车零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利润150元,每制造一个乙种零件可获利润260元,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.
(1)请写出此车间每天所获利润y(元)与x(名)之间的函数关系式;
(2)若要使车间每天所获利润不低于24000元,你认为至少要派多少名工人去制造乙种零件才合适?

(1)根据题意,可得
y=150×6x+260×5(20-x)
=-400x+26000(0≤x≤20);
(2)由题意,知y≥24000,
即-400x+26000≥24000,
令-400x+26000=24000,
解得x=5.
∵在y=-400x+26000中,-400<0,
∴y的值随x的值的增大而减少,
∴要使-400x+26000≥24000,需x≤5,
即最多可派5名工人制造甲种零件,
此时有20-x=20-5=15(名).
答:至少要派15名工人制造乙种零件才合适.