已知数列{an}的通项公式an=1/[n*(n+2)],则其前n项和为Sn,limSn=
问题描述:
已知数列{an}的通项公式an=1/[n*(n+2)],则其前n项和为Sn,limSn=
答
∵ an=1/[n*(n+2)]=1/2[1/n-1/(n+2)]∴Sn=a1+a2+a3+a4+a5+.+an-2+an-1+an=1/2[(1-1/3)+(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+(1/5-1/7)+.+(1/(n-2)-1/n)+(1/(n-1)-1/(n+1))+(1/n-1/(n+2))]=1/2[1+1/2-1/(n+1)-1/(n+2)]...