已知n属于N,n>=1,f(n)=√(n^2+1)-n,t(n)=1/2n,g(n)=n-√(n^2-1)
问题描述:
已知n属于N,n>=1,f(n)=√(n^2+1)-n,t(n)=1/2n,g(n)=n-√(n^2-1)
则f(n),t(n),g(n)的大小关系为?
答
f(n)=√(n^2+1)-n=1/(√(n^2+1)+n)1/(n+n)=1/(2n)=t(n)
所以:
g(n)>t(n)>f(n)