数列bn的通项公式为bn=3/(2n-1)(2n+1),则Sn=?
问题描述:
数列bn的通项公式为bn=3/(2n-1)(2n+1),则Sn=?
答
因为bn=3/(2n-1)(2n+1)=(3/2)[1/(2n-1)-1/(2n+1)]
于是Sn=b1+b2+.+bn
=(3/2)[1-1/3+1/3-1/5+1/5-1/7+.+1/(2n-1)-1/(2n+1)]
=(3/2)[1-1/(2n+1)]=3n/(2n+1)