动点P(X,Y),Q(a,b)分别在直线L':X-Y-5=0,L'':X-Y-15=0上移动,求PQ的中点K到原点的距离的最小值

问题描述:

动点P(X,Y),Q(a,b)分别在直线L':X-Y-5=0,L'':X-Y-15=0上移动,求PQ的中点K到原点的距离的最小值

看着复杂实际是很简单的,你可以画出题中给出的两条直线,不难看出是两条平行的直线,要想得到到原点最小距离,那么k点所在的直线应是和上两条直线垂直的,且经过原点,那么这条直线应为x+y=0,这样就可以求出k点坐标(-5,5)
那么 到原点的距离就为 :5√2