已知x²-4x+1,求(1)x²+x²/1 (2)x四次方+x²+1/x²

问题描述:

已知x²-4x+1,求(1)x²+x²/1 (2)x四次方+x²+1/x²

已知条件应该是:x²-4x+1=0,则
(1)x²+1=4x
两边同除以x
x+1/x=4
两边平方
x²+2+1/x²=16
x²+1/x²=16-2
x²+1/x²=14
(2)(x^4+x²+1)/x²
=x²+1+1/x²
=(x²+1/x²)+1
=14+1
=15

能把题目写完整吗?看的不是太真切

x²-4x+1=0 两边同时除以x得
x-4+1/x=0
x+1/x=4
(1)x²+1/x²
=(x²+2+1/x²)-2
=(x+1/x)²-2
=4²-2
=16-2
=14
(2)x²/(x的4次方+x²+1) 分子分母同时除以x²得
=1/(x²+1+1/x²)
=1/[(x²+1/x²)+1]
=1/(14+1)
=1/15