{an}中,已知log2^a(n+1)=1+log2^an,且a1+a2+……+a100=100,则a101+a102+……+a200=?
问题描述:
{an}中,已知log2^a(n+1)=1+log2^an,且a1+a2+……+a100=100,则a101+a102+……+a200=?
答
整理log2^a(n+1)=1+log2^an得其为等比数列q=10,a1+a2+……+a100=100所以
a101+a102+……+a200=q^100*(a1+a2+……+a100)=10^102