设无穷数列的前n项和为Sn=(1/2+1/3)+(1/2^2+1/3^2)+..+(1/2^n+1/3^n),lim(n->∞)Sn=?

问题描述:

设无穷数列的前n项和为Sn=(1/2+1/3)+(1/2^2+1/3^2)+..+(1/2^n+1/3^n),lim(n->∞)Sn=?

Sn=(1/2+1/3)+(1/2^2+1/3^2)+..+(1/2^n+1/3^n)
=(1/2+1/2^2+...+1/2^n)+(1/3+1/3^2+...+1/3^n)
=1-1/2^n+(1-1/3^n)/2
=1+1/2-1/2^n/1/(2*3^n)
所以lim(n→∞)Sn=1+1/2-0-0=1.5