y=(x-1/X)(X2-1/X2)的导数,

问题描述:

y=(x-1/X)(X2-1/X2)的导数,

由已知y = (x – 1/x)*(x 2 –1/x 2 ) = x 3 –1/x – x + 1/x 3 ,定义域为x ≠ 0 ; 求导可得:y ’ = 3x 2 –1*(-1)x -2 –1 + (-3)*x -4 = 3x 2 + 1/x 2 –1 – 3/x 4 .综上所述,原函数的导数为 y’ = 3x 2 + 1/x 2 –1 – 3/x 4 .