已知数列{an}的各项均为正数,它的前n项和Sn满足Sn=1/6(an+1)(an+2),并且a2,a4,a9成等比数列. (1)求数列{an}的通项公式; (2)设bn=(-1)n+1anan+1,Tn为数列{bn}的前n项和,求T2n.

问题描述:

已知数列{an}的各项均为正数,它的前n项和Sn满足Sn

1
6
(an+1)(an+2),并且a2,a4,a9成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=(-1)n+1anan+1,Tn为数列{bn}的前n项和,求T2n

(1)∵对任意n∈N*,有Sn

1
6
(an+1)(an+2)①当n≥2时,
Sn−1
1
6
(an−1+1)(an−1+2)

当①-②并整理得(an+an-1)(an-an-1-3)=0,
而{an}的各项均为正数,所以an-an-1=3.
∴当n=1时,有S1a1
1
6
(a1+1)(a1+2)
,解得a1=1或2,
当a1=1时,an=1+3(n-1)=3n-2,此时a42=a2a9成立;
当a1=2时,an=2+3(n-1)=3n-1,此时a42=a2a9不成立;舍去.
所以an=3n-2,n∈N*,
(2)T2n=b1+b2+…+b2n
=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1
=a2(a1-a3)+a4(a3-a5)+…+a2n(a2n-1-a2n+1
=-6a2-6a4-…-6a2n=-6(a2+a4+…+a2n
=−6×
n(4+6n−2)
2
=−18n2−6n