求函数导数f(x)=ln ctg x/2 在点x= -π/6 .(在点负六分之兀.)求导数.
问题描述:
求函数导数f(x)=ln ctg x/2 在点x= -π/6 .
(在点负六分之兀.)
求导数.
答
f(x)=lnctg(x/2);
f'(x)=[1/ctg(x/2]*[ctg(x/2)]'
=[1/ctg(x/2)]*[-csc^2(x/2)]*(x/2)'
=-[csc^2(x/2)/[2ctg(x/2)]
=-1/[2sin(x/2)cos(x/2)]
=-1/sinx.
f'(-π/6)
=-1/sin(-π/6)
=1/sin(π/6)
=2.
答
首先对f(x)=ln ctg x/2求导数,有 f(x)'=(ln ctg x/2)'=(ctg x/2)'/(ctg x/2)= 1/2 * (-1-ctg^2 x/2) / (ctg x/2)= -1/( 2 sinx/2 * cosx/2)= -1/sinx代入x= -π/6,得到f(-π/6)'=2.所以函数f(x)=ln ctg x/2 在点x= ...