证明sec^2 x + csc^2 x = sec^2 x × csc^2 x右边是相乘1 + 2 = 2 × 1
问题描述:
证明sec^2 x + csc^2 x = sec^2 x × csc^2 x
右边是相乘
1 + 2 = 2 × 1
答
左边sec(平方)x+csc(平方)x=1/cos(平方)x+1/sin(平方)x 右边=1/sin(平方)xcos(平方)x 左边右边在同时乘以sin(平方)xcos(平方)x 即可以得到结果.