y = sec (x) + csc (x) 求导,之后代入x = 3pi / 4 求值,要较详细步骤!如题无误!
问题描述:
y = sec (x) + csc (x) 求导,之后代入x = 3pi / 4 求值,要较详细步骤!
如题无误!
答
y' = (sec(x))' + (csc(x))'
=tan(x)sec(x) - cot(x) csc(x)
带入x= 3π/4有
y' = -1 * (-根号2) - (-1) * (根号2)
=2根号2
答
y'=secxtanx+(-cscxcotx)=secxtanx-cscxcotxx=3π/4y'=(-√2)*(-1)-√2*(-1)=2√2 求导过程(secx)'=[(cosx)^-1]'=-1*(cosx)^-2*(cosx)'=-(cosx)^-2*(-sinx)=sinx/cosx*1/cosx=secxtanx(cscx)'同理可得