m×n矩阵A的秩等于r,则n元齐次线性方程组Ax=0的解集S的秩R等于n-r.证明过程中为什么设

问题描述:

m×n矩阵A的秩等于r,则n元齐次线性方程组Ax=0的解集S的秩R等于n-r.证明过程中为什么设
m×n矩阵A的秩等于r,则n元齐次线性方程组Ax=0的解集S的秩R等于n-r.
证明过程中为什么设矩阵A的前r个列向量线性无关对结果没有影响?我用的是同济版的教材

A有r列线性无关
适当调整未知量的顺序,即交换A的列,不影响解的情况比如:设y1=x2,y2=x1其余yi=xi
那么系数矩阵的1,2列交换
得到解后再将x1,x2交换回来就是原方程组的解不管是否最终结果,这时注重的是解的存在性,交换前后的解一一对应换过来就是原方程组的解了
换之前是一一对应采纳了哈
但我还是要给你说清楚
书上没提交换, 我提交换是为了帮助理解
举个例子看看吧
x1+2x2+3x3+4x4=0
2x1+4x2+5x3+6x4=0
记为 AX=0
A=
1 2 3 4
2 4 5 6
(前两列线性相关)

令 y1=x1,y2=x3,y3=x2,y4=x4
方程组变为
y1+3y2+2y3+4y4=0
2y1+5y2+4y3+6y4=0
记为 BX=0
B=
1324
2546
(前两列线性无关)

则 (x1,x2,x3,x4)^T 是 AX=0 的解向量的充要条件是(x1,x3,x2,x4)^T 是 BX=0 的解向量
所以研究 AX=0 的解的结构 等价于 研究 BX=0 的解的结构是。
关键是一一对应,秩相同