设η1与η2是非齐次线性方程组Ax=b的两个不同解(A是m×n矩阵),ξ是对应的齐次线性方程组Ax=0的非零解,证明:(1)向量组η1,η1-η2线性无关;(2)若秩r(A)=n-1,则向量组ξ,η1,η2线性相关.

问题描述:

设η1与η2是非齐次线性方程组Ax=b的两个不同解(A是m×n矩阵),ξ是对应的齐次线性方程组Ax=0的非零解,证明:
(1)向量组η1,η12线性无关;
(2)若秩r(A)=n-1,则向量组ξ,η1,η2线性相关.

证明:(1)设k1η1+k2(η12)=0,则
k11+k2A(η12)=0
已知η1与η2是非齐次线性方程组Ax=b的两个不同解,因此
1=Aη2=b
∴k1b=0
而b≠0
∴k1=0
∴k2(η12)=0
又η1与η2是互不相同的,即η12≠0
∴k2=0
∴向量组η1,η12线性无关
(2)由秩r(A)=n-1,知Ax=0的基础解系只含有一个解向量
∴ξ是Ax=0的一个基础解系
又η12是Ax=0的一个非零解
∴ξ、η12线性相关,即存在数k,使得η12=kξ
∴kξ+η12=0
即向量组ξ,η1,η2线性相关
答案解析:(1)写出向量组的线性组合,然后利用η1与η2是非齐次线性方程组Ax=b的两个不同解,证明系数为零即可;(2)由r(A)=n-1,得到齐次线性方程组Ax=0的基础解系只含有一个解向量;再由η12是Ax=0的一个非零解,得到ξ、η12线性相关,从而证明结论.
考试点:向量组线性无关的判定与证明;向量组线性相关的判别.
知识点:此题考查向量组的线性无关或相关的判定、齐次线性方程组与非齐次线性方程组解的关系和解的结构,是基础知识点的综合.