∑1/(n*(lnn)^p),其n从2到∞,求该式的收敛性.

问题描述:

∑1/(n*(lnn)^p),其n从2到∞,求该式的收敛性.

p1是收敛,这是一个很著名的结论,要证明的话,就用柯西积分审敛法则过程如下:由于是非负递减序列,1/n(lnn)^p与∫[2->∞]1/x(lnx)^pdx有相同的敛散性∫[2->∞]1/x(lnx)^pdx=∫[2->∞]lnx^(-p)d(lnx)=[1/(1-p)](lnx)^(1...