点M在圆C1:x2+y2=1上,点N在圆C2:x2+y2-6x-8y+21=0,则|MN|的取值范围
问题描述:
点M在圆C1:x2+y2=1上,点N在圆C2:x2+y2-6x-8y+21=0,则|MN|的取值范围
答
圆C1:x2+y2=1的半径为1,圆心为(0,0)圆C2:x2+y2-6x-8y+21=(x-3)²+(y-4)²-4=0,即:(x-3)²+(y-4)²=4,半径为:2,圆心为(3,4)因为两个圆的圆心距为:√(3²+4²)=5>R1+R2=1...