在平面直角坐标系xOy中,设直线y=3x+2m和圆x2+y2=n2相切,其中m,n∈N,0<|m-n|≤1,若函数f(x)=mx+1-n的零点x0∈(k,k+1)k∈Z,则k=_.

问题描述:

在平面直角坐标系xOy中,设直线y=

3
x+2m和圆x2+y2=n2相切,其中m,n∈N,0<|m-n|≤1,若函数f(x)=mx+1-n的零点x0∈(k,k+1)k∈Z,则k=______.

∵直线y=3x+2m和圆x2+y2=n2相切,∴圆心到直线的距离是半径n,∴2m2=n∴2m=2n,∵m,n∈N,0<|m-n|≤1,∴m=3,n=4,∴函数f(x)=mx+1-n=3x+1-4,要求函数的零点所在的区间,令f(x)=0,即3x+1-4=0,∴3x+1=4,...