已知:如图,AB=CD,DE垂直于AC,BF垂直于AC,垂足分别为E,F,DE=BF求证:(1)AE=CF;(2)AB平行CD.

问题描述:

已知:如图,AB=CD,DE垂直于AC,BF垂直于AC,垂足分别为E,F,DE=BF求证:(1)AE=CF;(2)AB平行CD.

证明:
因为AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF
根据全等三角形的判断 :直角三角形 斜边和一条直角边(HL)
△AFB与△CED全等
所以 AF=CE 又EF=FE AF-EF=AE=CE-FE=CF
所以AE=CF
又△AFB与△CED全等,
角DCE=角BAF
根据内错角相等,两直线平行,所以AB//CD
☆⌒_⌒☆ 希望可以帮到you~你人真好O(∩_∩)O谢谢,记的采纳~~\(≧▽≦)/~啦啦啦