f1(x)=2除以(1+X)

问题描述:

f1(x)=2除以(1+X)
f(n+1)X=f1【fn(x)】
其中(x)和(n+1)
都是下标
并且An=fn(0)-1除以fn(0)+2
则A2007=?
2007 是下标

因为fn=1(0)=f1[fn(0)]=2/(1+fn(0)
所以[fn+1(0)-1]/[fn+1(0)+2]=(-1/2)*[fn(0)-1]/[fn(0)+2](化简后)
即an+1=(-2)an
a1=1/4
a2=-1/8
所以an=1/4*(-1/2)^(n-1)=(-1/2)^(n+1)对于任何正整数n均成立
a2007=(-1/2)^2008=1/2^2008.