数列(an}的前n项和为Sn,且满足an=-3Sn*Sn-1(n>=2),a1=1/3 1.证(1/Sn}是等差数列
问题描述:
数列(an}的前n项和为Sn,且满足an=-3Sn*Sn-1(n>=2),a1=1/3 1.证(1/Sn}是等差数列
数列(an}的前n项和为Sn,且满足an=-3Sn*Sn-1(n>=2),a1=1/3
1.证(1/Sn}是等差数列
2.令bn=2(1-n)an(n>=2)求证b2平方+b3平方+.+bn平方
答
1)S[n]-S[n-1] = -3S[n]*S[n-1]
两边除以 - S[n]*S[n-1]
1/S[n] -1/S[n-1] =3
2)S[n]=1/(3n)
a[n]= S[n] - S[n-1] =1/( 3(1-n)n )
b[n]=2/(3n)
因为1/(n^2) b2平方+b3平方+.+bn平方
=4/9*(1/2^2 +1/3^2+...+1/n^2)