已知:x^2+(1除以x^2)=18,则x-(1除以x)=

问题描述:

已知:x^2+(1除以x^2)=18,则x-(1除以x)=

x^2+(1除以x^2)=1+1/x^2=18,所以1/x^2=17,x^2=1/17,x=+-根号1/17
x-(1除以x)=(x^2-1)/x=(1/17-1)/+-根号1/17=正负(16*根号17)/17

x²+1/x²=18
x²-2+1/x²=16
(x-1/x)²=16
x-1/x=±4