十万火急 柯西不等式习题

问题描述:

十万火急 柯西不等式习题
1.已知a>b>c>d 求证1/(a-b)+1/(b-c)+1/(c-a)≥9/(a-d)
2.已知a,b,c>0且满足a+b+c=1 求证a3+b3+c3≥(a2+b2+c2)/3
3.若a,b,c>0,证明a/(b+2c)+b/(c+2a)+c/(a+2b)≥1
注.字母后的数字为上标

只需证明 (a-d) [1/(a-b)+1/(b-c)+1/(c-d)] >= 9 [1/(a-b) +1/(b-c) +1/(c-d)](a-d) =[1/(a-b) +1/(b-c) +1/(c-d)](a-b+b-c+c-d) = [1 + (b-c)/(a-b) + (c-d)/(a-b)] + [1 + (a-b)/(b-c) + (c-d)/(b-c)] + [1 + [(a...