已知函数g(x)=1/2sin(2x+2π/3)的图像向左平移π/4个单位长度,再向上平移1/2个单位长度,得到f(x)=acos^2(x+π/3)的图像
问题描述:
已知函数g(x)=1/2sin(2x+2π/3)的图像向左平移π/4个单位长度,再向上平移1/2个单位长度,得到f(x)=acos^2(x+π/3)的图像
(1) 求实数a,b的值
(2)设函数φ(x)=g(x)-根号3f(x) 求φ(x)的单调增区间
漏了东西 重发一遍
已知函数g(x)=1/2sin(2x+2π/3)的图像向左平移π/4个单位长度,再向上平移1/2个单位长度,得到f(x)=acos^2(x+π/3)+b的图像
(1) 求实数a,b的值
(2)设函数φ(x)=g(x)-根号3f(x) 求φ(x)的单调增区间
答
(1)g(x)=1/2sin(2x+2π/3)=g(x)=1/2sin[2(x+π/3)]
向左平移π/4个单位长度,再向上平移1/2个单位长度后
f(x)=1/2sin[2(x+π/3+π/4)]+1/2
=1/2sin[2(x+π/3)+π/2]+1/2
=1/2cos[2(x+π/3)]+1/2
=1/2[2cos^2(x+π/3)-1]+1/2
=cos^2(x+π/3)
∴ a=1 b=0
(2)φ(x)=g(x)-√3f(x)
=1/2sin[2(x+π/3)]-√3cos^2(x+π/3)
=1/2sin[2(x+π/3)]-√3[1/2cos[2(x+π/3)]+1/2]
=1/2sin[2(x+π/3)]-√3/2cos[2(x+π/3)]-√3/2
=sin[2(x+π/3)-π/6]-√3/2
=sin[2x+π/2]-√3/2
=cos2x-√3/2
所以 φ(x)的单调增区间由下式确定
-π+2kπ≤2x≤2kπ
即 -π/2+kπ≤x≤kπ (k=0,±1,±2,…)为所求的增区间