怎样证明外心和垂心是一点的三角形是正三角形

问题描述:

怎样证明外心和垂心是一点的三角形是正三角形

如图

(1)

∵点O为三角形外心

∴AO=BO(外心到三角形三个顶点的距离相等)

∴∠OBA=∠OAB

(2)

∵在△BFO和△AOD中,∠BOF=∠DOA(对顶角相等),∠BFO=∠ODA=90°

∴∠OBF=∠OAD

由(1)(2)可得:

∠OBA+∠OBF=∠OAB+∠OAD

即:∠ABF=∠BAD

同理可证,∠ABF=∠ACF,∠ACF=∠BAD

∴∠ABF=∠ACF=∠BAD

∴△ABC为正三角形