解分式方程6y+12/y^2+4y+4 -y^2-4/y^2-4y+4 +y^2/y^2-4=0

问题描述:

解分式方程6y+12/y^2+4y+4 -y^2-4/y^2-4y+4 +y^2/y^2-4=0
解分式方程6y+12/(y^2+4y+4) -y^2-4/(y^2-4y+4) +y^2/(y^2-4)=0

6y+12/y^2+4y+4 -y^2-4/y^2-4y+4 +y^2/y^2-4=0 没有说明分母是那个 分子是那个 这样子很混乱 建议加括号扩住分子分母我现在加了括号解6(Y+2)/(Y+2)^2-(Y+2)(Y-2)/(Y-2)^2+Y^2/(Y+2)(Y-2)=06/(y+2)-(y+2)/(Y-2)+Y^2/(Y+2)(Y-2)=06(Y-2)/(Y+2)(Y-2)-(Y+2)^2/(Y+2)(Y-2)+Y^2/(Y+2)(X-2)=0(6Y-12-Y^2-4Y-4+Y^2)/(Y+2)(X-2)=0(2Y-16)/(Y+2)(X-2)=0两边同乘于(Y+2)(X-2)得(这句不用写)2y-16=02Y=16Y=8