函数y=根号5+2x-x²的值域是
问题描述:
函数y=根号5+2x-x²的值域是
答
y=-(x-1)^2+根号5+1
所以值域是(-无穷,根号5+1]
答
y=√(5+2x-x²)=√[6-(x-1)²]
因为0≤6-(x-1)²≤6
所以0≤√[6-(x-1)²]≤√6
所以值域是[0,√6]
答
5+2x-x²
=-x²+2x-1+6
=-(x-1)²+6≤6
根号下则0≤5+2x-x²≤6
0≤y≤√6
所以值域[0,√6]