已知(b-c)lgX+(c-a)lgY+(a-b)lgZ=0

问题描述:

已知(b-c)lgX+(c-a)lgY+(a-b)lgZ=0
(1)若a,b,c成等差数列且公差不为0,求证x,y,z成等比数列
(2)若x,y,z成等比数列且公比不为1,求证a,b,c成等差数列

(1)若a,b,c成等差数列且公差不为0

a-b = b-c = d
a-c = 2d
d≠0
原式=dlgX-2dlgY=dlgZ=0
=>
lg(XZ/YY)=0
=>
XZ=YY
X,Y,Z成等比数列
(2)
设y=kx,z=kkx
k≠1
=>
(b-c)lgX + (c-a)(lgk+lgx)+(a-b)(2lgk+lgx) = 0
=>
lgk(c-a+2a-2b)=0
=>
c+a=2b
a,b,c成等差数列