如图,凸四边形ABCD中,对角线AC、BD相交于O点,若三角形AOD的面积是2,三角形COD的面积是1,三角形COB的面积是4,则四边形ABCD的面积是_.

问题描述:

如图,凸四边形ABCD中,对角线AC、BD相交于O点,若三角形AOD的面积是2,三角形COD的面积是1,三角形COB的面积是4,则四边形ABCD的面积是______.

∵△AOD与△COD的高相等,
∴OA:OC=S△AOD:S△COD=2:1.
又∵S△AOB:S△BOC=OA:OC=2:1
∴S△AOB=2S△BOC=2×4=8
∴边形ABCD的面积=S△AOB+S△BOC+S△AOD+S△COD=8+4+2+1=15.
故答案是:15.