数列{an}的前n项和为Sn=2n+q,bn=lgan,已知{bn}为等差数列. (1)求q; (2)求数列{anbn}的前n项和Tn.
问题描述:
数列{an}的前n项和为Sn=2n+q,bn=lgan,已知{bn}为等差数列.
(1)求q;
(2)求数列{anbn}的前n项和Tn.
答
(1)∵数列{an}的前n项和为Sn=2n+q,bn=lgan,{bn}为等差数列,
∴n=1时,a1=S1=2+q,
n≥2时,an=Sn−Sn−1=2n−1,
∴n=1时,b1=lga1=lg(2+q),
n≥2时,bn=lgan=(n-1)lg2,
要使{bn}为等差数列,
则b1=lga1=lg(2+q)=0,
∴q=1.
(2)∵an=2n−1,
∴bn=lgan=(n-1)lg2,
∴Tn=1×0+2×lg2+…+2n−1×(n−1)lg2,①
∴2Tn=22•lg2+23•2lg2+…+2n•(n−1)lg2,②
①-②,得-Tn=2lg2+22lg2+23lg2+…+2n-1lg2-2n•(n-1)lg2
=lg2×[
−2n(n−1)]2(1−2n−1) 1−2
=-lg2(n•2n-2n-1+2),
∴Tn=(n•2n−2n+1+2)•lg2.