求值域:y=3x/(x²+x+1)(x<0)的值域 答案是y∈[-3,0)

问题描述:

求值域:y=3x/(x²+x+1)(x<0)的值域 答案是y∈[-3,0)

y=3x/(x²+x+1)
=3/(x+1+1/x)
∵x0,-1/x>0
∴由均值定理有:
-x+(-1/x)≥2√[(-x)*(-1/x)]=2 (当且仅当-x=-1/x即x=-1时,取等号)
∴x1/(x+1+1/x)≥-1
即0>3/(x+1+1/x)≥-3
∴函数y=3x/(x²+x+1)的值域是0>y≥-3