函数f(x)=ln(x+1)-ax∧2-x,a∈R(1)求f(x)的单调区间 (2)求证:对任意的正整数n,不等式ln(n+1/n)<1/n都成立
问题描述:
函数f(x)=ln(x+1)-ax∧2-x,a∈R
(1)求f(x)的单调区间
(2)求证:对任意的正整数n,不等式ln(n+1/n)<1/n都成立
答
第一题挺简单,讨论a的范围.
∵原函数f(x)=ln(x+1)-ax²-x
∴原函数f(x)的定义域为x>-1
且导函数g(x)=1/(x+1)-2ax-1
=[1-2ax(x+1)-(x+1)]/(x+1)
=[﹣2ax²-﹙2a+1﹚x]/(x+1)
①当a=0时g(x)=-x/(x+1)
∴当a=0时,原函数f(x)在 (0,﹢∞)单调递减 (﹣1,0)单调递增.
②当a≠0时g(x)=[﹣2ax²-﹙2a+1﹚x]/(x+1)
∵(x+1)>0
∴原函数f(x)的单调性由h(x)=﹣2ax²-﹙2a+1﹚x 决定﹙x>﹣1﹚
Δ=[-﹙2a+1﹚]²-4×﹙﹣2a)×0=(2a+1)²≥0
∴x1=0,x2=-﹙2a+1﹚/2a=-1-1/2a
下面讨论a大于或小于0的情况
第二题:
设x = 1/n,x∈(0,1]
g(x) = ln(x+1) - x
g'(x) = -x/(x+1),而g'(x)