一道高三函数题已知函数f(x)=ln^2(1+x)-x^2/(1+x)(1)证明函数f(x)在(0,+∞)上单调递减(2)若不等式(1+1/n)^(n+a)≤e对任意n∈N*都成立,求a的最大值
问题描述:
一道高三函数题
已知函数f(x)=ln^2(1+x)-x^2/(1+x)
(1)证明函数f(x)在(0,+∞)上单调递减
(2)若不等式(1+1/n)^(n+a)≤e对任意n∈N*都成立,求a的最大值
答
(1)求导就行了,高三了你应该会的吧!因为我也是高三的~(2)两边取自然对数(n+a)ln(1+1/n)≤1由于1+1/n>1 ln(1+1/n)>0当n+a≤0时 (n+a)ln(1+1/n)≤0≤1a≤-n对任意的n∈N*都成立 由于-n无最小值此情况不可能成立当n...