定义在R上的函数y=f(x)具有以下性质①对任意x属于R都有f(x^3)=f^3(x)②对于任意实数x1.x2.x1不等于x2都有f(x1)≠f(x2).则f(0)+f(1)+f(-1)的值是?
问题描述:
定义在R上的函数y=f(x)具有以下性质①对任意x属于R都有f(x^3)=f^3(x)②对于任意实数x1.x2.x1不等于x2都有f(x1)≠f(x2).则f(0)+f(1)+f(-1)的值是?
答
f(0)=[f(0)]^3
f(1)=[f(1)]^3
f(-1)=[f(-1)]^3
x=x^3,x=0,1,-1
故:f(0)+f(1)+f(-1)=0+1-1=0