已知sin(540°+ɑ)=-1/3,求[sin(180°+ɑ)*cos(720°+α)*tan(540°+α)]/[cos(-α-180°)*tan(900°+α])

问题描述:

已知sin(540°+ɑ)=-1/3,求[sin(180°+ɑ)*cos(720°+α)*tan(540°+α)]/[cos(-α-180°)*tan(900°+α])

sin(540°+ɑ) = -sinα = -1/3
sinα = 1/3
[sin(180°+ɑ)cos(720°+α)tan(540°+α)]/[cos(-α-180°)tan(900°+α)]
= (-sinɑcosαtanα)/(-cosαtanα)
= sinɑ
= 1/3