设二次函数f(x)=ax^2+bx+c(a,b,c为实数)满足f(-1)=0,且对任意x有x-1

问题描述:

设二次函数f(x)=ax^2+bx+c(a,b,c为实数)满足f(-1)=0,且对任意x有x-1

f(-1)=a-b+c=0,b=a+c
f(x)=ax^2 + (a+c)x +c
对任意x有x-1即x-1≤ax^2 + (a+c)x +c ≤x^2-3x+3恒成立
y=x-1和y=x^2-3x+3联立求交点,(2,1)
取x=2, 可得1≤ 6a + 3c ≤1,所以6a+3c=1, 即c=1/3 - 2a,
代入x-1≤ax^2 + (a+c)x +c可得
0≤ax^2 - (2/3+a)x + 4/3 -2a
由函数恒成立可知:a>0,Δ解得,a=2/9,c=-1/9,b=1/9
f(x)=(2x^2 + x - 1)/9

NO

由f(-1)=a-b+c=0,可得b=a+c,所以f(x)=ax^2 + (a+c)x +c.因为对任意x有x-1≤ax^2 + (a+c)x +c ≤x^2-3x+3成立,取x=2,可得1≤ 6a + 3c ≤1,所以6a+3c=1,即c=1/3 - 2a,代入x-1≤ax^2 + (a+c)x +c可得0≤ax^2 - (2/3+a)x...